
How Novices Perceive Interactive Theorem Provers
(Extended Abstract)

Sára Juhošová
Delft University of Technology

Delft, The Netherlands
S.Juhosova@tudelft.nl

Abstract
Interactive theorem provers (ITPs) are known to have a steep
learning curve and poor usability. This hinders their spread
into commercial software development, wasting their poten-
tial to improve software quality. To understand what makes
them inaccessible to novices, we conducted an online survey
among bachelor students, asking them to list the obstacles
they encountered while learning Agda. Analysis of the re-
sults revealed design choices and tool deficiencies which
do not provide an adequate level of support to beginner
nor advanced users. These observations point to one promi-
nent point of improvement: providing a more accessible and
sturdy infrastructure for ITP programmers.

Keywords: interactive theorem provers, Agda, accessibility,
entry barriers

ACM Reference Format:
Sára Juhošová. 2024. How Novices Perceive Interactive Theorem
Provers (Extended Abstract). In Proceedings of Workshop on Type-
Driven Development (TyDe ’24). ACM, New York, NY, USA, 4 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
In a world where software is present in all aspects of our
lives and where small code bugs can have catastrophic con-
sequences [12], program verification becomes increasingly
more essential. There are many known techniques for such
verification, including model-checking [3], abstract inter-
pretation [5], and interactive theorem provers (ITPs) - the
focus of our study. ITPs allow human users and computers
to “work together interactively to produce a formal proof”
[9, p. 135], essentially allowing users to reason about their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’24, September 06, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

programs and use the computer to verify their specifications.
Examples of ITPs include Agda [15], Coq [4], and Lean [13].
While ITPs are powerful tools for ensuring program cor-

rectness, they have trouble spreading into commercial soft-
ware development [6, 8, 11]. One possible explanation for
the lack of industrial adoption is their poor usability. Despite
a general awareness of this problem, user studies and user-
oriented design are exceedingly rare in the field. Instead,
research on ITPs focuses on powerful but complex features
with the potential to improve software engineering. In order
to put that potential to good use, we need to make ITPs more
accessible to a wider range of practitioners.
Our long-term goal is to identify the most significant as-

pects of ITPs to improve with respect to usability, and outline
design guidelines that ITP maintainers can follow. Here, we
start at the beginning: we examine the obstacles novices
face when learning to use an interactive theorem prover and
discuss the implications and possibilities for improving the
accessibility of ITPs.

2 Study Setup
In this study, we asked students to list up to five obstacles
they encountered when being introduced to Agda. Their re-
sponses were analysed using qualitative research techniques,
described in the sections below.

Participants
The participants in this studywere bachelor students taking a
Functional Programming1 course at the TU Delft. During the
course, they learned the basics of functional programming
in Haskell and had a two-week introduction to Agda. Within
this introduction, they were taught to

• interactively develop Agda programs,
• use the Curry-Howard correspondence to express log-
ical properties as types,

• use indexed data types and dependent pattern match-
ing to enforce invariants of their programs,

• and formally prove properties of purely functional
programs by using the identity type and equational
reasoning.

The students were introduced to these topics during live
lectures and were given multiple exercises to practice on.

1https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=64462

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=64462


TyDe ’24, September 06, 2024, Milan, Italy Sára Juhošová

Which obstacles did you face when learning to work with
Agda?
These obstacles can be related to:

• Agda’s language features,
• Agda’s syntax,
• other design aspects of Agda,
• the way you need to think about programs in Agda,
• the installation,
• the IDE you used (not [the online environment]),
• anything else you can think of.

Please be as specific as possible and try to reflect on Agda instead
of the course. Feel free to elaborate.
List up to five obstacles you encountered when learning to work
with Agda: [...]

Figure 1. Survey question for identifying obstacles

They were encouraged to use the agda-mode extension in
Visual Studio Code (VSC).

Of the 35 participating students (P1-35), only one indicated
that their knowledge of Agda (or another ITP) was more ad-
vanced than what was taught in the course. We therefore
identify the group as “novices” in interactive theorem prov-
ing.

Survey
The data was collected through an online survey, distributed
to the students after the two-week introduction to Agda and
open for a period of three weeks. The survey had an open-
ended question with five short free-text fields, where they
could use their own words to describe the obstacles they
had encountered (specific wording is shown in Figure 1). We
did not want to restrict the answers to preconceived obsta-
cles and risk missing the opportunity to discover something
unexpected.

Analysis
We analysed the data by performing two separate iterations
of coding, i.e. “systematically categorizing excerpts in [our]
data in order to find themes and patterns” [1]. In the first
iteration, we used descriptive coding [14, p. 55 - 69] to help us
identify types of obstacles occurring in our data. This process
was done inductively, i.e. without preconceived codes.

In the second iteration, we used the identified obstacle
types from the first iteration to reclassify each submitted
obstacle. We found that the data contained more subtleties
than a simple descriptive code could capture, and decided
to add sub-codes for each submission. These were coded
on a more granular level and added interpretation to the
description.

For example, consider the following two obstacles:

• “The Agda plugin in my [VSC] was often crashing and
I had to restart it.” [P18]

• “Syntax highlighting completely disappears if there is
some mistake in the code which makes it harder to
find the mistake.” [P15]

Both relate to the quality of developer tools provided for
Agda, thus receiving the code tooling. However, while one
talks about unintended behaviour (crashing), the other re-
lates to the design of the tool (syntax highlighting only ap-
pears on successfully compiled files). By capturing these nu-
ances in the sub-codes, we were able to better characterise
each obstacle.
When the coding was done, we drew diagrams [2, p. 218

- 221], using sub-codes to help us understand the relation-
ships between the identified obstacle types. These diagrams
helped us identify related categories of obstacles, presented
in Section 3. They also prompted the writing of memos, notes
of “ideas about codes and their relationships as they strike
the analyst” [7], which form the basis of our interpretation
in Section 4.

3 Identified Obstacles
During the analysis, we identified five categories of obsta-
cles related to Agda’s theory (T), implementation (I), and
applicability in the real world (A). We outline them below.
Unfamiliar Concepts (T). Agda is a very different type of
programming language thanmost bachelor students are used
to. Using dependent types is “not intuitive” [P13] and the
idea that the “magic happens during type checking instead
of execution [takes time] to wrap [their] head around” [P31].
Complex Theory (T).A significant amount of understanding
of the underlying theory is needed to reason about code
in Agda. “The way you need to think about your program
[is] much more abstract” [P28] and effective use of Agda’s
powerful features requires familiarity with their underlying
principles (e.g. recognising when Agda is and is not able to
unify two terms via refl).
“Weird” Design (I). The most mentioned type of obstacle
(mentioned by 23 participants) was Agda’s “weird” [P6] de-
sign. Examples of this include:

• the use of Unicode characters which “[raise the] barrier
of entry” [P17],

• an enforcement of spacing rules that are not standard
in other programming languages,

• error messages that require theoretical knowledge and
experience to be helpful,

• and abstractions which require an understanding of
the implementation.

Inadequate Ecosystem (I). The ecosystem that supports
program-writing in Agda is

• incomplete (“[there is a] lack of online courses/resources
on Agda” [P34]),

https://marketplace.visualstudio.com/items?itemName=banacorn.agda-mode


How Novices Perceive Interactive Theorem Provers
(Extended Abstract) TyDe ’24, September 06, 2024, Milan, Italy

• buggy (“the installation of Agda is a horrible experi-
ence” [P4]),

• inconvenient (“syntax highlighting [is] not updating
automatically and not highlighting anything on invalid
syntax” [P29]),

• and not accessible to novices (“the Agda docs have a lot
of material on super crazy stuff, but very little on the
detailed semantics of the basic language” [P5]).

Eighteen participants mentioned issues with the ecosystem,
including crashing editor plugins, missing documentation,
or under-specified interactive features (e.g. automatic proof
search).
Perceived Irrelevance (A). Being taught to use Agda as a
proof assistant, students find it “hard to imagine writing
software with Agda” [P28]. They are used to creating and
testing software that interacts with humans in the real world,
which requires IO as well as integration with other software
development tools. Having experienced neither, they are left
feeling that “[Agda] might be a bit too theoretical” [P23] and
struggle to find its relevance.

4 Interpretation
There are three interesting observations we can make based
on the identified obstacles.

First, many of these obstacles are a result of the high cou-
pling between Agda’s underlying theory and its design. “The
relative complexity of the theories underlying [ITPs] makes
them inaccessible to a wide range of software engineers who
are not experienced mathematicians” [10, p. 1]. Developers
need a sturdy grasp of what is going on under the hood to
write programs, understand errors, and make use of Agda’s
interactive features and automation.

Second, despite the amount of unfamiliar concepts novices
need to get used to, Agda’s ecosystem has very little support-
ing infrastructure for them. The syntax is unusual, the use
cases differ frommore common programming languages, and
the documentation is not complete and accessible enough to
bridge those differences. Similarly, Agda’s standard libraries
are difficult to work with, their design aimed at experienced
ITP programmers. This, coupled with a novice’s difficulty to
imagine where Agda could be applied, might cause a frus-
trating onboarding experience.

Thirdly, Agda’s design choices (e.g. interactive commands
or Unicode syntax) make it dependent on a custom devel-
opment environment. At the same time, the existing envi-
ronment consists of tools riddled with bugs and confusing
information. There seems to be a pattern of well-intended
features (such as installation through an editor plugin) which
do not reach the quality necessary to be practical.

Error messages, which were mentioned by 12 participants,
are a demonstrative example of our interpretation. Consider
the following piece of code:

1 swap : a × b → b × a

2 swap (a, b) = b , a

Upon loading this code in VSC, the agda-mode extension
will detect an error and report the following:

Could not parse the left -hand side swap (a, b)

Problematic expression: (a, b)

Operators used in the grammar:

None

when scope checking the left -hand side

swap (a, b) in the definition of swap

This behaviour causes several difficulties for a novice:
• the message contains obscure information that needs
to be filtered out,

• an online search using the error message yields no
relevant results,

• and all syntax highlighting will be removed from their
file, making the error even more difficult to spot.

That is a lot of cognitive overhead for an error as simple
as “there is a space missing on line 2, column 8”.

5 Implications
Our results offer an illustrative picture of novices’ struggles
with Agda. This picture is valuable to experienced ITP main-
tainers, who have overcome these obstacles long ago and
have more complex challenges on their mind. More impor-
tantly, it offers a clear and simple point of improvement:
provide more accessible and sturdy infrastructure.
To make ITPs more accessible to a wider range of practi-

tioners, we need to provide them with the support to build
a foundation and master the basics. This can be as simple
as completing the documentation, maintaining the devel-
opment environment, and applying user feedback on ITP
design. We see these tasks as an opportunity to broaden the
community and strengthen the field by investing more into
ITP developer experience.

6 Limitations & Future Work
This study was conducted on a rather homogenous set of
students, learning the basics of Agda in a short span of time.
Their answers might have been influenced by the lecturing
style and content, the formulation of the survey questions,
as well as the idiosyncrasies and youth of Agda compared to
other ITPs. In order to overcome these limitations, we hope
to conduct more research into the usability of ITPs, focusing
on a more varied audience and a wider selection of ITPs.

Additionally, while this study highlights the obstacles that
onemight facewhen learning to use Agda, it does not provide
solutions for the technical challenges. The underlying theory
does not only affect how ITPs are used, but also how they
are designed. Research into creating “intuitive” features that
fit within the paradigm of ITPs would be an interesting and
challenging endeavour.

https://agda.readthedocs.io/en/v2.6.0.1/tools/auto.html#auto
https://agda.readthedocs.io/en/v2.6.0.1/tools/auto.html#auto


TyDe ’24, September 06, 2024, Milan, Italy Sára Juhošová

References
[1] [n. d.]. Essential Guide to Coding Qualitative Data. https://delvetool.

com/guide
[2] Kathy Charmaz. 2014. Constructing Grounded Theory (2 ed.). https://uk.

sagepub.com/en-gb/eur/constructing-grounded-theory/book235960
[3] Edmund M. Clarke. 1997. Model checking. In Foundations of Software

Technology and Theoretical Computer Science (Lecture Notes in Com-
puter Science), S. Ramesh and G. Sivakumar (Eds.). Springer, 54–56.
https://doi.org/10.1007/BFb0058022

[4] Coq Team. [n. d.]. The Coq Proof Assistant. https://coq.inria.fr/
[5] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a

unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages (POPL ’77). ACM,
238–252. https://doi.org/10.1145/512950.512973

[6] Joseph Eremondi, Wouter Swierstra, and Jurriaan Hage. 2019. A frame-
work for improving error messages in dependently-typed languages.
Open Computer Science 9 (Jan. 2019), 1–32. https://doi.org/10.1515/
comp-2019-0001

[7] Barney G. Glaser. 1978. Theoretical sensitivity: Advances in the method-
ology of grounded theory. Sociology Press, Mill Valley, CA.

[8] Sarah Grebing and Mattias Ulbrich. 2020. Usability Recommendations
for User Guidance in Deductive Program Verification. In Deductive
Software Verification: Future Perspectives: Reflections on the Occasion of
20 Years of KeY, Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel,
Reiner Hähnle, and Mattias Ulbrich (Eds.). Springer International Pub-
lishing, 261–284. https://doi.org/10.1007/978-3-030-64354-6_11

[9] John Harrison, Josef Urban, and Freek Wiedijk. 2014. History
of Interactive Theorem Proving. In Handbook of the History of
Logic, Jörg H. Siekmann (Ed.). Computational Logic, Vol. 9. North-
Holland, 135–214. https://www.sciencedirect.com/science/article/pii/
B9780444516244500046

[10] Gada F. Kadoda, Roger G. Stone, and Dan Diaper. 1999. Desirable
features of educational theorem provers - a cognitive dimensions
viewpoint. In Annual Workshop of the Psychology of Programming
Interest Group.

[11] Philipp Kant, Kevin Hammond, Duncan Coutts, James Chapman,
Nicholas Clarke, Jared Corduan, Neil Davies, Javier Díaz, Matthias
Güdemann, Wolfgang Jeltsch, Marcin Szamotulski, and Polina Vino-
gradova. 2020. Flexible Formality Practical Experience with Agile
Formal Methods. In Trends in Functional Programming, Aleksander
Byrski and John Hughes (Eds.). Springer International Publishing,
94–120. https://doi.org/10.1007/978-3-030-57761-2_5

[12] Amy J. Ko, Bryan Dosono, and Neeraja Duriseti. 2014. Thirty years
of software problems in the news. In Proc. of the 7th International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE 2014). ACM, 32–39. https://doi.org/10.1145/2593702.2593719

[13] Lean FRO. [n. d.]. Programming Language and Theorem Prover —
Lean. https://lean-lang.org/

[14] Matthew B.. Miles and Michael Huberman. 1994. Qualitative data
analysis: an expanded sourcebook (2nd ed ed.). Sage, Thousand Oaks,
CA.

[15] The Agda Development Team. 2024. Agda. https://wiki.portal.
chalmers.se/agda/pmwiki.php

https://delvetool.com/guide
https://delvetool.com/guide
https://uk.sagepub.com/en-gb/eur/constructing-grounded-theory/book235960
https://uk.sagepub.com/en-gb/eur/constructing-grounded-theory/book235960
https://doi.org/10.1007/BFb0058022
https://coq.inria.fr/
https://doi.org/10.1145/512950.512973
https://doi.org/10.1515/comp-2019-0001
https://doi.org/10.1515/comp-2019-0001
https://doi.org/10.1007/978-3-030-64354-6_11
https://www.sciencedirect.com/science/article/pii/B9780444516244500046
https://www.sciencedirect.com/science/article/pii/B9780444516244500046
https://doi.org/10.1007/978-3-030-57761-2_5
https://doi.org/10.1145/2593702.2593719
https://lean-lang.org/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php

	Abstract
	1 Introduction
	2 Study Setup
	3 Identified Obstacles
	4 Interpretation
	5 Implications
	6 Limitations & Future Work
	References

